More Examples on Proof Writing

Here are two more examples of simple proof-writing exercises. We will approach them in the manner of the "Tips on Proof Writing" handout.

Example 1. Prove: Let $a, b \in \mathbb{Z}$, and let $m>0$ be an integer. Then

$$
\operatorname{gcd}(m a, m b)=m \cdot \operatorname{gcd}(a, b)
$$

Let's outline our plan of attack.

- What are we trying to prove? We need to show that $\operatorname{gcd}(m a, m b)=m \cdot \operatorname{gcd}(a, b)$. Our plan will be to show that $\operatorname{gcd}(m a, m b) \leq m \cdot \operatorname{gcd}(a, b)$, and that $m \cdot \operatorname{gcd}(m a, m b) \leq \operatorname{gcd}(m a, m b)$.
- What are the hypotheses? We are simply given that $a, b, m \in \mathbb{Z}$, and that $m>0$.
- What theorems or definitions might be useful? We know that $d=\operatorname{gcd}(a, b)$ divides a and b, so $m d$ divides both $m a$ and $m b$. Also, Bézout's lemma says that there are integers x and y satisfying

$$
a x+b y=d,
$$

so

$$
\max +m b y=m d .
$$

- Put it all together: $m d \mid m a$ and $m d \mid m b \Longrightarrow m d$ is a (positive) common divisor of $m a, m b \Longrightarrow m d \leq \operatorname{gcd}(m a, m b)$. Also,

$$
\max +m b y=m d \Longrightarrow \operatorname{gcd}(m a, m b) \mid m d,
$$

so $\operatorname{gcd}(m a, m b) \leq m d$. Thus $\operatorname{gcd}(m a, m b)=m \cdot \operatorname{gcd}(a, b)$.
Now we'll write it up.
Proof. Let $d=\operatorname{gcd}(a, b)$. Since d divides both a and b, $m d$ divides both $m a$ and $m b$. Since $m>0$, $m d$ is a positive common divisor of $m a$ and $m b$, so it must be smaller than the greatest common divisor. That is, $m d \leq \operatorname{gcd}(m a, m b)$. Also, Bézout's lemma implies that there are integers x and y satisfying

$$
a x+b y=d .
$$

Multiplying both sides by m, we get

$$
\max +m b y=m d .
$$

Since $\operatorname{gcd}(m a, m b)$ divides both $m a$ and $m b$, it divides the left side of this equation. Thus $\operatorname{gcd}(m a, m b)$ divides $m d$, so we must have

$$
\operatorname{gcd}(m a, m b) \leq m d
$$

Therefore, $m d=\operatorname{gcd}(m a, m b)$, or $m \cdot \operatorname{gcd}(a, b)=\operatorname{gcd}(m a, m b)$.

Example 2. Prove: The equation

$$
a x+b y=c
$$

has integer solutions x and y if and only if $\operatorname{gcd}(a, b)$ divides c.
There are two directions here, so we need to handle them one at a time.

- For the first direction, what are we being asked to prove? We need to show that $\operatorname{gcd}(a, b)$ divides c.
- What are the hypotheses? We are given that there are integers x and y such that $a x+b y=c$.
- What theorems or definitions might be useful? We'll use the definition of the greatest common divisor, namely that it dives a and b. If we let $d=\operatorname{gcd}(a, b)$, we can write

$$
a=e d \quad \text { and } \quad b=f d
$$

for some integers e and f.

- Now let's put it together.

$$
\begin{aligned}
a=e d \quad \text { and } \quad b=f d & \Longrightarrow c=a x+b y=e d x+f d y \\
& \Longrightarrow c=d(e x+f y) \\
& \Longrightarrow d \text { divides } c
\end{aligned}
$$

- What do we need to do for the other direction? We assume that $\operatorname{gcd}(a, b)$ divides c, and we show that $a x+b y=c$ has integer solutions.
- What can we use? First, if $d=\operatorname{gcd}(a, b)$ divides c, we can write $c=k d$ for some $k \in \mathbb{Z}$. Second, we have Bézout's lemma: there exist $x_{0}, y_{0} \in \mathbb{Z}$ such that

$$
a x_{0}+b y_{0}=d
$$

- Now put it together:

$$
\begin{aligned}
a x_{0}+b y_{0}=d & \Longrightarrow k a x_{0}+k b y_{0}=k d=c \\
& \Longrightarrow a\left(k x_{0}\right)+b\left(k y_{0}\right)=c
\end{aligned}
$$

so we can take $x=k x_{0}$ and $y=k y_{0}$.
Now we'll try to write it up nicely.
Proof. Suppose first that there are integers $x, y \in \mathbb{Z}$ such that $a x+b y=c$. Let $d=\operatorname{gcd}(a, b)$. Since d divides both a and b, there are integers $e, f \in \mathbb{Z}$ such that $a=e d$ and $b=f d$. Then

$$
a x+b y=e d x+f d y=d(e x+f y) .
$$

But $a x+b y=c$, so

$$
c=d(e x+f y),
$$

and d divides c.

Conversely, suppose that d divides c. Then there is an integer k satisfying $c=k d$. By Bézout's lemma, there exist $x_{0}, y_{0} \in \mathbb{Z}$ such that

$$
a x_{0}+b y_{0}=d .
$$

Thus

$$
k\left(a x_{0}+b y_{0}\right)=k d,
$$

or

$$
a\left(k x_{0}\right)+b\left(k y_{0}\right)=c .
$$

If we set $x=k x_{0}$ and $y=k y_{0}$, then $a x+b y=c$, so we are done.

