
More Examples on Proof Writing

Here are two more examples of simple proof–writing exercises. We will approach them in the
manner of the “Tips on Proof Writing” handout.

Example 1. Prove: Let a, b ∈ Z, and let m > 0 be an integer. Then

gcd(ma,mb) =m ⋅ gcd(a, b).

Let’s outline our plan of attack.

• What are we trying to prove? We need to show that gcd(ma,mb) = m ⋅ gcd(a, b). Our plan
will be to show that gcd(ma,mb) ≤m ⋅ gcd(a, b), and that m ⋅ gcd(ma,mb) ≤ gcd(ma,mb).

• What are the hypotheses? We are simply given that a, b,m ∈ Z, and that m > 0.

• What theorems or definitions might be useful? We know that d = gcd(a, b) divides a and b,
so md divides both ma and mb. Also, Bézout’s lemma says that there are integers x and y
satisfying

ax + by = d,

so
max +mby =md.

• Put it all together: md ∣ ma and md ∣ mb Ô⇒ md is a (positive) common divisor of
ma,mb Ô⇒ md ≤ gcd(ma,mb). Also,

max +mby =md Ô⇒ gcd(ma,mb) ∣md,

so gcd(ma,mb) ≤md. Thus gcd(ma,mb) =m ⋅ gcd(a, b).

Now we’ll write it up.

Proof. Let d = gcd(a, b). Since d divides both a and b, md divides both ma and mb. Since m > 0,
md is a positive common divisor of ma and mb, so it must be smaller than the greatest common
divisor. That is, md ≤ gcd(ma,mb). Also, Bézout’s lemma implies that there are integers x and y
satisfying

ax + by = d.

Multiplying both sides by m, we get

max +mby =md.

Since gcd(ma,mb) divides both ma and mb, it divides the left side of this equation. Thus
gcd(ma,mb) divides md, so we must have

gcd(ma,mb) ≤md.

Therefore, md = gcd(ma,mb), or m ⋅ gcd(a, b) = gcd(ma,mb).
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Example 2. Prove: The equation
ax + by = c

has integer solutions x and y if and only if gcd(a, b) divides c.
There are two directions here, so we need to handle them one at a time.

• For the first direction, what are we being asked to prove? We need to show that gcd(a, b)
divides c.

• What are the hypotheses? We are given that there are integers x and y such that ax+ by = c.

• What theorems or definitions might be useful? We’ll use the definition of the greatest common
divisor, namely that it dives a and b. If we let d = gcd(a, b), we can write

a = ed and b = fd

for some integers e and f .

• Now let’s put it together.

a = ed and b = fd Ô⇒ c = ax + by = edx + fdy

Ô⇒ c = d(ex + fy)

Ô⇒ d divides c

• What do we need to do for the other direction? We assume that gcd(a, b) divides c, and we
show that ax + by = c has integer solutions.

• What can we use? First, if d = gcd(a, b) divides c, we can write c = kd for some k ∈ Z. Second,
we have Bézout’s lemma: there exist x0, y0 ∈ Z such that

ax0 + by0 = d.

• Now put it together:

ax0 + by0 = d Ô⇒ kax0 + kby0 = kd = c

Ô⇒ a(kx0) + b(ky0) = c

so we can take x = kx0 and y = ky0.

Now we’ll try to write it up nicely.

Proof. Suppose first that there are integers x, y ∈ Z such that ax + by = c. Let d = gcd(a, b). Since
d divides both a and b, there are integers e, f ∈ Z such that a = ed and b = fd. Then

ax + by = edx + fdy = d(ex + fy).

But ax + by = c, so
c = d(ex + fy),

and d divides c.
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Conversely, suppose that d divides c. Then there is an integer k satisfying c = kd. By Bézout’s
lemma, there exist x0, y0 ∈ Z such that

ax0 + by0 = d.

Thus
k(ax0 + by0) = kd,

or
a(kx0) + b(ky0) = c.

If we set x = kx0 and y = ky0, then ax + by = c, so we are done.
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